Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy.

نویسندگان

  • Noël Boens
  • Wenwu Qin
  • Nikola Basarić
  • Johan Hofkens
  • Marcel Ameloot
  • Jacques Pouget
  • Jean-Pierre Lefèvre
  • Bernard Valeur
  • Enrico Gratton
  • Martin vandeVen
  • Norberto D Silva
  • Yves Engelborghs
  • Katrien Willaert
  • Alain Sillen
  • Garry Rumbles
  • David Phillips
  • Antonie J W G Visser
  • Arie van Hoek
  • Joseph R Lakowicz
  • Henryk Malak
  • Ignacy Gryczynski
  • Arthur G Szabo
  • Don T Krajcarski
  • Naoto Tamai
  • Atsushi Miura
چکیده

A series of fluorophores with single-exponential fluorescence decays in liquid solution at 20 degrees C were measured independently by nine laboratories using single-photon timing and multifrequency phase and modulation fluorometry instruments with lasers as excitation source. The dyes that can serve as fluorescence lifetime standards for time-domain and frequency-domain measurements are all commercially available, are photostable under the conditions of the measurements, and are soluble in solvents of spectroscopic quality (methanol, cyclohexane, water). These lifetime standards are anthracene, 9-cyanoanthracene, 9,10-diphenylanthracene, N-methylcarbazole, coumarin 153, erythrosin B, N-acetyl-l-tryptophanamide, 1,4-bis(5-phenyloxazol-2-yl)benzene, 2,5-diphenyloxazole, rhodamine B, rubrene, N-(3-sulfopropyl)acridinium, and 1,4-diphenylbenzene. At 20 degrees C, the fluorescence lifetimes vary from 89 ps to 31.2 ns, depending on fluorescent dye and solvent, which is a useful range for modern pico- and nanosecond time-domain or mega- to gigahertz frequency-domain instrumentation. The decay times are independent of the excitation and emission wavelengths. Dependent on the structure of the dye and the solvent, the excitation wavelengths used range from 284 to 575 nm, the emission from 330 to 630 nm. These lifetime standards may be used to either calibrate or test the resolution of time- and frequency-domain instrumentation or as reference compounds to eliminate the color effect in photomultiplier tubes. Statistical analyses by means of two-sample charts indicate that there is no laboratory bias in the lifetime determinations. Moreover, statistical tests show that there is an excellent correlation between the lifetimes estimated by the time-domain and frequency-domain fluorometries. Comprehensive tables compiling the results for 20 (fluorescence lifetime standard/solvent) combinations are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ time-resolved fluorescence spectroscopy in the frequency domain in capillary electrochromatography.

In situ time-resolved fluorescence spectroscopy for capillary electrochromatography (CEC) is described in the frequency domain. Fluorescence decay of the solute molecules is collected directly in the packed stationary phase of the CEC capillary. The fluorescence lifetime profile of the solute molecules reveals the microenvironments they experience in the C18 chromatographic interface. A quartz ...

متن کامل

Comparison of frequency-domain and time-domain fluorescence lifetime tomography.

We compare frequency-and time-domain formulations of deep-tissue fluorescence imaging of turbid media. Simulations are used to show that time-domain fluorescence tomography, implemented via the asymptotic lifetime-based approach, offers a significantly better separability of multiple lifetime targets than a frequency-domain approach. We also demonstrate experimentally, using complex-shaped phan...

متن کامل

Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy.

Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation m...

متن کامل

Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence.

Time-resolved fluorescence spectroscopy is an indispensable tool in the chemical, physical and biological sciences for the study of fast kinetic processes in the subpicosecond to microsecond time scale. This review focuses on the development and modern implementation of the frequency domain approach to time-resolved fluorescence. Both intensity decay (lifetime) and anisotropy decay (dynamic pol...

متن کامل

Frequency-domain phase fluorometry in the presence of dark states: A numerical study

Fluorescence anomalous phase advance (FAPA) is a newly discovered spectroscopy phenomenon: instead of lagging behind the modulated light, fluorescence signal can exhibit FAPA as if it precedes the excitation source in time. While FAPA offers a promising technique for probing dark state lifetime, the underlying mechanism is not fully elucidated. Herein we investigate frequency-domain phase fluor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 2007